

ADVANCED GCE UNIT MATHEMATICS

4724/01

Core Mathematics 4 **THURSDAY 14 JUNE 2007**

Afternoon

Time: 1 hour 30 minutes

Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

This document consists of 4 printed pages.

© OCR 2007 [R/102/2711]

OCR is an exempt Charity

[Turn over

- 1 The equation of a curve is y = f(x), where $f(x) = \frac{3x+1}{(x+2)(x-3)}$.
 - (i) Express f(x) in partial fractions. [2]
 - (ii) Hence find f'(x) and deduce that the gradient of the curve is negative at all points on the curve. [3]
- 2 Find the exact value of $\int_0^1 x^2 e^x dx$. [6]
- Find the exact volume generated when the region enclosed between the x-axis and the portion of the curve $y = \sin x$ between x = 0 and $x = \pi$ is rotated completely about the x-axis. [6]
- 4 (i) Expand $(2 + x)^{-2}$ in ascending powers of x up to and including the term in x^3 , and state the set of values of x for which the expansion is valid. [5]
 - (ii) Hence find the coefficient of x^3 in the expansion of $\frac{1+x^2}{(2+x)^2}$. [2]
- 5 A curve C has parametric equations

$$x = \cos t$$
, $y = 3 + 2\cos 2t$, where $0 \le t \le \pi$.

- (i) Express $\frac{dy}{dx}$ in terms of t and hence show that the gradient at any point on C cannot exceed 8.
- (ii) Show that all points on C satisfy the cartesian equation $y = 4x^2 + 1$. [3]
- (iii) Sketch the curve $y = 4x^2 + 1$ and indicate on your sketch the part which represents C. [2]
- The equation of a curve is $x^2 + 3xy + 4y^2 = 58$. Find the equation of the normal at the point (2, 3) on the curve, giving your answer in the form ax + by + c = 0, where a, b and c are integers. [8]
- 7 (i) Find the quotient and the remainder when $2x^3 + 3x^2 + 9x + 12$ is divided by $x^2 + 4$. [4]
 - (ii) Hence express $\frac{2x^3 + 3x^2 + 9x + 12}{x^2 + 4}$ in the form $Ax + B + \frac{Cx + D}{x^2 + 4}$, where the values of the constants A, B, C and D are to be stated. [1]
 - (iii) Use the result of part (ii) to find the exact value of $\int_{1}^{3} \frac{2x^3 + 3x^2 + 9x + 12}{x^2 + 4} dx.$ [5]

@ OCR 2007

8 The height, h metres, of a shrub t years after planting is given by the differential equation

$$\frac{\mathrm{d}h}{\mathrm{d}t}=\frac{6-h}{20}.$$

A shrub is planted when its height is 1 m.

(i) Show by integration that
$$t = 20 \ln \left(\frac{5}{6 - h} \right)$$
. [6]

- (ii) How long after planting will the shrub reach a height of 2 m? [1]
- (iii) Find the height of the shrub 10 years after planting. [2]
- (iv) State the maximum possible height of the shrub. [1]
- 9 Lines L_1 , L_2 and L_3 have vector equations

$$L_1$$
: $\mathbf{r} = (5\mathbf{i} - \mathbf{j} - 2\mathbf{k}) + s(-6\mathbf{i} + 8\mathbf{j} - 2\mathbf{k}),$
 L_2 : $\mathbf{r} = (3\mathbf{i} - 8\mathbf{j}) + t(\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}),$
 L_3 : $\mathbf{r} = (2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) + u(3\mathbf{i} + c\mathbf{j} + \mathbf{k}).$

- (i) Calculate the acute angle between L_1 and L_2 . [4]
- (ii) Given that L_1 and L_3 are parallel, find the value of c. [2]
- (iii) Given instead that L_2 and L_3 intersect, find the value of c. [5]

© OCR 2007 4724/01 Jun07

4724	Mark Sche	June 2007	
1	(i) Correct format $\frac{A}{x+2} + \frac{B}{x-3}$	M1	s.o.i. in answer
	A = 1 and $B = 2(ii) -A(x+2)^{-2} - B(x-3)^{-2} f.t.$	A1 2 √A1	for both
	Convincing statement that each denom > 0 State whole exp < 0 AG	B1 B1 3	accept ≥ 0 . Do not accept $x^2 > 0$. Dep on previous 4 marks.
2	Use parts with $u = x^2$, $dv = e^x$	*M1	obtaining a result $f(x) + /- \int g(x)(dx)$
	Obtain $x^2e^x - \int 2xe^x (dx)$	A1	
	Attempt parts again with $u = (-)(2)x$, $dv = e^x$	M1	
	Final = $(x^2 - 2x + 2)e^x$ AEF incl brackets	A1	s.o.i. eg $e + (-2x + 2)e^x$
	Use limits correctly throughout $e^{(1)} - 2$ ISW Exact answer only	dep*M1 A1 6	Tolerate (their value for $x = 1$) (-0) Allow 0.718 \rightarrow M1
		7	6
3	Volume = $(k)\int_{0}^{\pi} \sin^2 x (dx)$	B1	where $k = \pi, 2\pi$ or 1; limits necessary
	Suitable method for integrating $\sin^2 x$	*M1	eg $\int +/-1+/-\cos 2x (dx)$ or single
			integ by parts & connect to $\int \sin^2 x (dx)$
	$\int \sin^2 x (\mathrm{d}x) = \frac{1}{2} \int 1 - \cos 2x (\mathrm{d}x)$	A1	or $-\sin x \cos x + \int \cos^2 x (\mathrm{d}x)$
	$\int \cos 2x (\mathrm{d}x) = \frac{1}{2} \sin 2x$	A1	or $-\sin x \cos x + \int 1 - \sin^2 x (dx)$
	Use limits correctly	dep*M1	
	Volume = $\frac{1}{2}\pi^2$ WWW Exact answer	A1 6	Beware : wrong working leading to $\frac{1}{2}\pi^2$
	(4 x)-2		
4	(i) $ \frac{\left(1 + \frac{x}{2}\right)^{-2}}{1 + \left(-2\right)\left(\frac{x}{2}\right) + \frac{-23}{2}\left(\frac{x}{2}\right)^2 + \frac{-234}{3!}\left(\frac{x}{2}\right)^3} $	M1	Clear indication of method of ≥ 3 terms
	= 1-x	B1	First two terms, not dependent on M1
	$+\frac{3}{4}x^2-\frac{1}{2}x^3$	A1	For both third and fourth terms
	$(2+x)^{-2} = \frac{1}{4} \left(\text{their exp of } (1+ax)^{-2} \right) \text{ mult out}$	√B1	Correct: $\frac{1}{4} - \frac{1}{4}x + \frac{3}{16}x^2 - \frac{1}{8}x^3$
	$ x < 2 \text{ or } -2 < x < 2 \text{ (but not } \left \frac{1}{2}x \right < 1)$	B1 5	
	(ii) If (i) is $a + bx + cx^2 + dx^3$ evaluate $b + d$	M1	
	$-\frac{3}{8} \left(x^3\right)$	√A1 2	Follow-through from $b + d$

$5(i) \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ M1	
1.0	
$= \frac{-4\sin 2t}{-\sin t}$ Al Accept $\frac{4\sin 2t}{\sin t}$ WWW	
$= 8 \cos t$ A1	
≤ 8 AG A1 4 with brief explanation eg $\cos t \leq 1$	
(ii) Use $\cos 2t = 2\cos^2 t + \frac{1}{2} \cos^2 t$ M1 If starting with $y = 4x^2 + 1$, then	
Use correct version $\cos 2t = 2\cos^2 t - 1$ A1 Subst $x = \cos t$, $y = 3 + 2\cos 2t$	M1
Produce WWW $y = 4x^2 + 1$ AG A1 3 Either substitute <u>a</u> formula for cos 2	?t M1
Obtain $0=0$ or $4\cos^2 t + 1 = 4\cos^2 t + \frac{Or}{O}$ Manip to give formula for $\cos 2t$ Obtain corr formula & say it's correct Any labelling must be correct either $x = \pm 1$ or $y = 5$ must be ma	M1 t A1
N.B. If (ii) answered or quoted before (i) attempted, allow in part (i) B2 for $\frac{dy}{dx} = 8x$ +B1,B1 if earned.	9
6 (i) $\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$ B1	
Using $d(uv) = u dv + v du$ for the (3)xy term M1	
$\frac{d}{dx}(x^{2} + 3xy + 4y^{2}) = 2x + 3x\frac{dy}{dx} + 3y + 8y\frac{dy}{dx}$ A1	
Solve for $\frac{dy}{dx}$ & subst $(x, y) = (2,3)$ M1 or v.v. Subst now or at normal eqn s	stage;
(M1 dep on either/both B1 M1 earne	ed)
$\frac{dy}{dx} = -\frac{13}{30}$ A1 Implied if grad normal = $\frac{30}{13}$	
Grad normal = $\frac{30}{13}$ follow-through $\sqrt{B1}$ This f.t. mark awarded only if numer	ical
Find equ <u>any</u> line thro (2,3) with <u>any</u> num grad M1 $30x - 13y - 21 = 0$ AEF A1 8 No fractions in final answer	8
- (1) I I I I I I I I I I I I I I I I I I I	
7 (i) Leading term in quotient = 2x B1 Suff evidence of division or identity process M1	
Quotient = $2x + 3$ A1 Stated or in relevant position in divis	sion
Remainder = x A1 4 Accept $\frac{x}{x^2 + 4}$ as remainder	
(ii) their quotient + $\frac{\text{their remainder}}{x^2 + 4}$ $\sqrt{B1}$ $1 = 2x + 3 + \frac{x}{x^2 + 4}$	
(iii) Working with their expression in part (ii) their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$ $\sqrt{B1}$	
<u>-</u>	
their $\frac{Cx}{x^2+4}$ integrated as $k \ln(x^2+4)$ M1 Ignore any integration of $\frac{D}{x^2+4}$	
$k = \frac{1}{2}C$ $\sqrt{A1}$	
2 -	
Limits used correctly throughout M1	

	I			
8	(i) Sep variables eg $\int \frac{1}{6-h} (dh) = \int \frac{1}{20} (dt)$	*M1		s.o.i. $\underline{Or} \frac{dt}{dh} = \frac{20}{6-h} \rightarrow M1$
	$LHS = -\ln(6-h)$	A1		& then $t = -20 \ln(6 - h)$ (+c) \rightarrow A1+A1
	$RHS = \frac{1}{20}t (+c)$	A1		
	Subst $t = 0, h = 1$ into equation containing 'c'	dep*M1		
	Correct value of their c = $-(20) \ln 5$ WWW	A1		or (20)In 5 if on LHS
	Produce $t = 20 \ln \frac{5}{6-h}$ WWW AG	A1	6	Must see $\ln 5 - \ln(6 - h)$
	(ii) When $h = 2$, $t = 20 \ln \frac{5}{4} = 4.46(2871)$	B1	1	Accept 4.5, 4 ½
	(iii) Solve $10 = 20 \ln \frac{5}{6-h}$ to $\frac{5}{6-h} = e^{0.5}$	M1		or $\frac{6-h}{5} = e^{-0.5}$ or suitable $\frac{1}{2}$ -way stage
	h = 2.97(2.9673467)[In (ii),(iii) accept non-decimal (exact) answersAccept truncated values in (ii),(iii).	A1 but -1 o		$6-5e^{-0.5}$ or $6-e^{1.109}$ e.]
	(iv) Any indication of (approximately) 6 (m)	B1	1	10
9	(i) Use -6i+8j-2k and i+3j+2k only	M1		
	Correct method for scalar product	M1		of <u>any</u> two vectors $(-6 + 24 - 4 = 14)$
	Correct method for magnitude	M1		of <u>any</u> vector $(\sqrt{36+64+4} = \sqrt{104})$ or $\sqrt{1+9+4} = \sqrt{14}$)
	68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad [N.B. 61 (60.562) will probably have been general		4 5i	
	(ii) Indication that relevant vectors are parallel	M1		-6i+8j-2k & 3i + cj + k with some indic of method of attack
	c = -4	A1	2	eg $-6\mathbf{i} + 8\mathbf{j} - 2\mathbf{k} = \lambda(3\mathbf{i} + c\mathbf{j} + \mathbf{k})$ $c = -4 \text{ WW} \rightarrow B2$
	(iii) Produce 2/3 equations containing <i>t,u</i> (& c)	M1		eg $3+t=2+3u,-8+3t=1+cu$ and $2t=3+u$
	Solve the 2 equations not containing 'c' $t = 2$, $u = 1$	M1 A1		
	Subst their (t,u) into equation containing c $c = -3$	M1 A1	5	
	Alternative method for final 4 marks		-	
	Solve two equations, one with 'c', for <i>t</i> and <i>u</i> in terms of c, and substitute into third equation	(M2)		
	<i>c</i> = −3	(A2)		11